Resources
Document & Video Library
FAQs
What is Cast Urethane?
Cast Urethanes are similar to injection molding. During the process of injection molding, a hard tool is created. The hard tool, made of an A side and a B side, forms a void within and that void is injected with plastics ranging in material property, durability, and consistency. Plastic cups, dishware, and toys are most commonly made using the process of injection molding because they are common consumer items that need to be produced on a mass scale, and injection molding (once the hard tool has been created) is designed for mass production.
Casting urethanes is similar in that polyurethanes are injected into a tool. But with cast urethanes, the tool is a soft tool, typically made with a type of silicone mold. The mold is created via a master pattern. Master patterns for cast urethanes can be created with CNC machining (which is a common process for injection molding) but cast urethane master patterns are often created with additive manufacturing (or 3D Printing) and the reasons for this vary.
Creating a cast urethane master pattern is different from the steps involved in creating hard tooling for injection molding. Hard tools for injection molding are going to be subjected to a lot of stress and heat during the injection process. They will see runs of thousands of parts per day. The care that goes into a hard tool involves intense machine programming which costs thousands of dollars alone. The price for hard tooling is balanced by the mass production the tooling brings, which is where cast urethanes begin to differ. Cast urethanes are suited for smaller runs of parts and prototyping. Because the cost for soft tooling is lower, down in the hundreds rather than hundreds of thousands, cast urethanes are excellent resources for creators still testing product design, for one-off products, or for testing market and consumer response to a new product.
Source: https://en.wikipedia.org/wiki/Cast_urethanes
For more information, visit: https://en.wikipedia.org/wiki/Cast_urethanes
What is Dunnage?
Dunnage is inexpensive or waste material used to load and secure cargo during transportation; more loosely, it refers to miscellaneous baggage, brought along during travel. The term can also refer to low-priority cargo used to fill out transport capacity which would otherwise ship underweight.
In the context of shipping manufactured goods, dunnage refers to the packing material used as protective fill inside the carton, box or other type container used to prevent the merchandise from being damaged during shipment.
Source: https://en.wikipedia.org/wiki/Dunnage
For more information, visit: https://en.wikipedia.org/wiki/Dunnage
What is Plastic Thermoforming?
Thermoforming is a manufacturing process where a plastic sheet is heated to a pliable forming temperature, formed to a specific shape in a mold, and trimmed to create a usable product. The sheet, or “film” when referring to thinner gauges and certain material types, is heated in an oven to a high-enough temperature that permits it to be stretched into or onto a mold and cooled to a finished shape. Its simplified version is vacuum forming.
In its simplest form, a small tabletop or lab size machine can be used to heat small cut sections of plastic sheet and stretch it over a mold using vacuum. This method is often used for sample and prototype parts. In complex and high-volume applications, very large production machines are utilized to heat and form the plastic sheet and trim the formed parts from the sheet in a continuous high-speed process, and can produce many thousands of finished parts per hour depending on the machine and mold size and the size of the parts being formed.
Thermoforming differs from injection molding, blow molding, rotational molding and other forms of processing plastics. Thin-gauge thermoforming is primarily the manufacture of disposable cups, containers, lids, trays, blisters, clamshells, and other products for the food, medical, and general retail industries. Thick-gauge thermoforming includes parts as diverse as vehicle door and dash panels, refrigerator liners, utility vehicle beds, and plastic pallets.
In the most common method of high-volume, continuous thermoforming of thin-gauge products, plastic sheet is fed from a roll or from an extruder into a set of indexing chains that incorporate pins, or spikes, that pierce the sheet and transport it through an oven for heating to forming temperature. The heated sheet then indexes into a form station where a mating mold and pressure-box close on the sheet, with vacuum then applied to remove trapped air and to pull the material into or onto the mold along with pressurized air to form the plastic to the detailed shape of the mold. (Plug-assists are typically used in addition to vacuum in the case of taller, deeper-draw formed parts in order to provide the needed material distribution and thicknesses in the finished parts.) After a short form cycle, a burst of reverse air pressure is actuated from the vacuum side of the mold as the form tooling opens, commonly referred to as air-eject, to break the vacuum and assist the formed parts off of, or out of, the mold. A stripper plate may also be utilized on the mold as it opens for ejection of more detailed parts or those with negative-draft, undercut areas. The sheet containing the formed parts then indexes into a trim station on the same machine, where a die cuts the parts from the remaining sheet web, or indexes into a separate trim press where the formed parts are trimmed. The sheet web remaining after the formed parts are trimmed is typically wound onto a take-up reel or fed into an inline granulator for recycling.
Most thermoforming companies recycle their scrap and waste plastic, either by compressing in a baling machine or by feeding into a granulator (grinder) and producing ground flake, for sale to reprocessing companies or re-use in their own facility. Frequently, scrap and waste plastic from the thermoforming process is converted back into extruded sheet for forming again.
Source: https://en.wikipedia.org/wiki/Thermoforming
For more information, visit: https://en.wikipedia.org/wiki/Thermoforming
What is Returnable Packaging?
Reusable packaging is manufactured of durable materials and is specifically designed for multiple trips and extended life. A reusable package or container is “designed for reuse without impairment of its protective function.” [1] The term returnable is sometimes used interchangeably but it can also include returning packages or components for other than reuse: recycling, disposal, incineration, etc. Typically, the materials used to make returnable packaging include steel, wood, polypropylene sheets or other plastic materials.[2]
Reusability of packaging is an important consideration of the environmental credo of “reduce, reuse, and recycle”. It is also important to the movement toward more sustainable packaging. Returnable packaging is encouraged by regulators.[3][4]
Source: https://en.wikipedia.org/wiki/Reusable_packaging
For more information, visit: https://en.wikipedia.org/wiki/Reusable_packaging